On the Geometry of Algebraic Groups and Homogeneous Spaces

نویسنده

  • MICHEL BRION
چکیده

Given a connected algebraic group G over an algebraically closed field and a G-homogeneous space X , we describe the Chow ring of G and the rational Chow ring of X , with special attention to the Picard group. Also, we investigate the Albanese and the “anti-affine” fibrations of G and X .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

On categories of merotopic, nearness, and filter algebras

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

متن کامل

Infinitesimal affine geometry of metric spaces endowed with a dilatation structure

We study algebraic and geometric properties of metric spaces endowed with dilatation structures, which are emergent during the passage through smaller and smaller scales. In the limit we obtain a generalization of metric affine geometry, endowed with a noncommutative vector addition operation and with a modified version of ratio of three collinear points. This is the geometry of normed affine g...

متن کامل

The X-ray Transform and its Application in Nano Crystallography

In this article a review on the definition of the X- ray transform and some ofits applications in Nano crystallography is presented. We shall show that the X- raytransform is a special case of the Radon transform on homogeneous spaces when thetopological group E(n)- the Euclidean group - acts on ℝ2 transitively. First someproperties of the Radon transform are investigated then the relationship ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009